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ABSTRACT:

The semantic labeling of 3D point clouds acquired via airborne laser scanning typically relies on the use of geometric features. In
this paper, we present a framework considering complementary types of geometric features extracted from multi-scale, multi-type
neighborhoods to describe (i) the local 3D structure for neighborhoods of different scale and type and (ii) how the local 3D structure
behaves across different scales and across different neighborhood types. The derived features are provided as input for several classifiers
with different learning principles in order to show the potential and limitations of the proposed geometric features with respect to the
classification task. To allow a comparison of the performance of our framework to the performance of existing and future approaches,

we evaluate our framework on the publicly available dataset provided for the ISPRS benchmark on 3D semantic labeling.

1. INTRODUCTION

The classification of 3D point clouds has become a topic of great
interest in photogrammetry, remote sensing, and computer vision.
In this regard, particular attention has been paid to those 3D point
clouds acquired via airborne laser scanning (ALS) as e.g. shown
in Figure 1 since these allow an automated analysis of large areas
in terms of assigning a (semantic) class label to each point of the
considered 3D point cloud (Chehata et al., 2009; Shapovalov et
al., 2010; Mallet et al., 2011; Niemeyer et al., 2014; Blomley et
al., 2016). However, it still remains challenging to classify ALS
point clouds due to the relatively low point density, the irregular
point distribution and the complexity of observed scenes. The
latter becomes even more significant if one faces many object
classes of interest (e.g. buildings, ground, cars, fences/hedges,
trees, shrubs or low vegetation). To compare the performance
of different approaches for classifying such ALS point clouds,
the ISPRS benchmark on 3D semantic labeling has recently been
launched with a given ALS dataset.

In this paper, we present a framework for the classification of 3D
point clouds obtained via airborne laser scanning. This frame-
work focuses on classifying each 3D point by considering a re-
spective feature vector which, in turn, has been derived by con-
catenating complementary types of geometric features (metrical
features and distribution features) which are extracted from mul-
tiple local neighborhoods of different scale and type. Using such
multi-scale, multi-type neighborhoods as the basis for feature ex-
traction not only allows for a description of the local 3D struc-
ture at each considered 3D point, but also for a description of
how the local 3D structure changes across different scales and
across different neighborhood types which, in turn, may signif-
icantly alleviate the classification task. In a detailed evaluation,
we demonstrate the performance of our framework on the given
ISPRS benchmark dataset. Thereby, we consider classification
results derived using several classifiers which rely on different
learning principles. Based on the derived results, we finally dis-
cuss both advantages and limitations of our framework in detail.

This paper represents an extension of our previous work (Blom-
ley et al., 2016). Concerning the framework, the main contribu-

tion consists in the use of multiple classifiers with different learn-
ing principles to obtain an impression about their relative perfor-
mance. Concerning the experiments, the main contribution con-
sists in the use of the recently released ISPRS benchmark dataset
to allow a comparison of the performance of our framework to
the performance of other existing and future approaches. Con-
cerning the discussion, the main contribution consists in a focus
on the overall performance of the presented framework relying
on a multi-scale, multi-type neighborhood instead of a focus on
the relative performance of different single-scale, multi-scale and
multi-scale, multi-type neighborhoods or a focus on the relative
performance of different feature sets.

After briefly discussing related work in Section 2, we present our
proposed framework in detail in Section 3. To demonstrate the
performance of this framework, we consider a commonly used
ALS benchmark dataset and provide the results obtained with our
framework in Section 4. Subsequently, the derived results are dis-
cussed in Section 5. Finally, in Section 6, we provide concluding
remarks and suggestions for future work.

2. RELATED WORK

In the context of 3D point cloud classification, the main steps
typically address the recovery of a suitable local neighborhood
for each 3D point (Section 2.1), the extraction of geometric fea-
tures based on information preserved in the local neighborhood
(Section 2.2) and the classification of each 3D point based on the
derived features (Section 2.3). In the following subsections, we
outline related work with respect to these three steps.

2.1 Neighborhood Recovery

To describe the local 3D structure at a considered 3D point X,
specific characteristics within a local neighborhood are typically
considered. Accordingly, an appropriate neighborhood definition
is required which may be based on different constraints:

o Single-scale neighborhoods are used to describe the local
3D structure at a specific scale. The most commonly applied



Figure 1. Exemplary 3D point cloud acquired via airborne laser scanning: the color encoding shows the assigned semantic class labels
(Powerline: violet; Low Vegetation: yellowish green; Impervious Surfaces: royalblue; Car: cyan; Fence / Hedge: pink; Roof: crimson;

Fagade: white; Shrub: gold; Tree: emerald-green).

single-scale neighborhoods are represented by (i) a spheri-
cal neighborhood formed by all 3D points within a sphere
around X, which is parameterized with a fixed radius (Lee
and Schenk, 2002), (ii) a cylindrical neighborhood formed
by all 3D points within a cylinder whose axis passes through
X and whose radius is fixed (Filin and Pfeifer, 2005), or
(iii) a neighborhood formed by the k£ € N nearest neighbors
of X (Linsen and Prautzsch, 2001). While the involved scale
parameter is still typically selected based on heuristic or em-
piric knowledge about the scene and/or the data, there are
also few approaches to automatically select the scale param-
eter in a generic way (Pauly et al., 2003; Mitra and Nguyen,
2003; Demantké et al., 2011; Weinmann et al., 2015a).

o Multi-scale neighborhoods not only allow to describe the
local 3D structure at specific scales, but also to describe
how the local 3D geometry behaves across scales. Respec-
tive approaches have been presented with a combination of
cylindrical neighborhoods with different radii (Niemeyer et
al., 2014; Schmidt et al., 2014) or a combination of spher-
ical neighborhoods with different radii (Brodu and Lague,
2012). Furthermore, it has been proposed to extract features
from different entities such as voxels, blocks and pillars (Hu
et al., 2013) or points, planar segments and mean shift seg-
ments (Xu et al., 2014). In all these cases, however, scale
parameters are selected based on heuristic or empiric knowl-
edge about the scene and/or the data.

2.2 Feature Extraction

Based on the selected neighborhood definition, the spatial ar-
rangement of 3D points within the neighborhood may be con-
sidered to derive a suitable description for a 3D point X to be
classified. This geometric description is typically represented in
the form of a feature vector. To define the single entries of such a
feature vector, features belonging to very different feature types
may be used:

e The first feature type comprises parametric features which
represent the estimated parameters when fitting geometric

primitives such as planes, cylinders or spheres to the given
data (Vosselman et al., 2004).

e The second feature type comprises metrical features which
address a description of local context by evaluating certain
geometric measures. The latter typically involve shape mea-
sures represented by a single value which specifies one sin-
gle property based on characteristics within the local neigh-
borhood (West et al., 2004; Jutzi and Gross, 2009; Mal-
let et al., 2011; Weinmann et al., 2013; Guo et al., 2015).
Such features are to some degree interpretable as they de-
scribe fundamental geometric properties of the local neigh-
borhood.

e The third feature type comprises sampled features such as
distribution features which address a description of local
context by sampling the distribution of a certain metric e.g.
in the form of histograms (Osada et al., 2002; Rusu et al.,
2008; Tombari et al., 2010; Blomley et al., 2014).

Among these feature types, especially metrical features and dis-
tribution features are widely but separately used for a variety of
applications.

2.3 Classification

Once a feature vector has been derived for a 3D point to be classi-
fied, the feature vector is provided as input for a classifier which
should allow to uniquely assign a respective (semantic) class la-
bel. Thereby, the straightforward solution consists in applying
standard classifiers such as a Support Vector Machine classifier,
a Random Forest classifier, a Bayesian Discriminant classifier,
etc. for classifying 3D points based on the derived feature vectors
(Lodha et al., 2006; Lodha et al., 2007; Mallet et al., 2011; Guo
et al., 2011; Khoshelham and Oude Elberink, 2012; Weinmann et
al., 2015a). Respective classifiers are available in numerous soft-
ware tools and easy-to-use, but the achieved labeling typically
reveals a noisy appearance since no spatial correlation between
class labels of neighboring 3D points is taken into account.

To account for the fact that the class labels of neighboring 3D
points might be correlated, contextual classification approaches



Figure 2. Neighborhood definitions used in this work as the basis
for extracting features for a considered 3D point X: cylindri-
cal neighborhoods N with different radii (green) and spherical
neighborhood NV, op¢ formed by an optimal number kopt of near-
est neighbors (blue).

may be applied where, in addition to the feature vector of the
considered 3D point X, the spatial relationship to other neighbor-
ing 3D points is considered in order to assign the class label. An
approach for a contextual classification of ALS point cloud data
has for instance been presented by applying a Conditional Ran-
dom Field on the basis of cylindrical neighborhoods (Niemeyer
etal., 2014), and the respective classification results represent the
baseline for the ISPRS benchmark on 3D semantic labeling.

3. METHODOLOGY

For each 3D point X to be classified, the proposed framework
successively applies three main steps which consist in the recov-
ery of a local neighborhood (Section 3.1), the extraction of geo-
metric features based on those 3D points within the local neigh-
borhood (Section 3.2) and the supervised classification of the de-
rived feature vector (Section 3.3).

3.1 Recovery of Local Neighborhoods

To obtain an appropriate local neighborhood as the basis for fea-
ture extraction, we focus on the use of a multi-scale, multi-type
neighborhood (Blomley et al., 2016) as e.g. given in Figure 2.
The multi-scale, multi-type neighborhood used in the scope of
this work comprises four cylindrical neighborhoods A, with radii
of Im, 2m, 3m and 5m (Niemeyer et al., 2014; Schmidt et al.,
2014), and a spherical neighborhood N opt formed by the k
closest neighbors, whereby the scale parameter k is derived via
eigenentropy-based scale selection (Weinmann et al., 2015a; Wein-
mann, 2016) and may hence be individual for each 3D point X.

3.2 Extraction of Geometric Features

The derived multi-scale, multi-type neighborhood serves as the
basis for extracting features. In the following, we distinguish be-
tween two feature types. Shape measures describe features that
comprise a single value each, whereby the value specifies one
(mathematical) property of the whole set of 3D points within the
evaluated local neighborhood (Section 3.2.1). As a consequence,
such features are typically interpretable. In contrast, shape dis-
tributions are characterized by the fact that each feature is rep-
resented by a collection of values e.g. in the form of histograms
(Section 3.2.2), where single values are hardly interpretable. Fi-
nally, all features are concatenated to a respective feature vector
and a subsequent normalization is carried out so that each feature
may contribute approximately the same, independent of its unit
and its range of values. For more details on the applied normal-
ization, we refer to (Blomley et al., 2016).

3.2.1 Shape Measures: We follow (Weinmann et al., 2015a)
and define a variety of geometric 3D properties as features:

e Height: H = 7

# 3D points within the local neighborhood
volume of the local neighborhood

e Local point density: D =
e Verticality: V =1 — nz where n is the normal vector

e Maximum height difference A H within the neighborhood

Standard deviation of height values o i within the neighbor-
hood

For the spherical neighborhood Nk,opt whose scale parameter
has been determined via eigenentropy-based scale selection, we
additionally consider the radius R of the considered local neigh-
borhood.

Furthermore, we extract covariance features (West et al., 2004;
Pauly et al., 2003) which are derived from the normalized eigen-
values \; (¢ € {1, 2, 3}) of the 3D structure tensor, where \; >
Ao > A3 >0and Ay + Ao+ A3 = 1:

e Linearity: Ly = %
Aa—A3

e Planarity: Py = o

e Sphericity: S\ = i—‘;’
e Omnivariance: Oy = VA1 A2 A3

e Anisotropy: Ay = )‘1/\_1’\3

e Eigenentropy: Ex = —A11n (A1) — A2 In (A2) — Az ln (A3)
e Sum of eigenvalues: ¥y = A1 + A2 + A3

e Local surface variation: C\ = m

3.2.2 Shape Distributions: Originally, this type of sampled
features has been proposed to describe the shape of a complete
object (Osada et al., 2002). The used adaptation of shape distribu-
tions to describe geometric properties of the local neighborhood
around a considered 3D point X has been presented in (Blomley
et al., 2014).

Generally, shape distributions are histograms of shape values,
which may be derived from random point samples by applying
(distance or angular) metrics as shown in Figure 3:

e A3: angle between any three random points

e DI: distance of one random point from the centroid of all
points within the neighborhood

e D2: distance between two random points

e D3: square root of the area spanned by a triangle between
three random points

e D4: cubic root of the volume spanned by a tetrahedron be-
tween four random points

Since the histogram counts of randomly sampled shape values
within each local neighborhood constitute the feature values, ap-
propriate histogram binning thresholds and a suitable number of
random pulls are crucial prerequisites. Following (Blomley et al.,
2014), we select 10 histogram bins, i.e. 10 feature values will be
produced from each metric, and we perform 255 pulls from the
local neighborhood. The binning thresholds of the histogram are
estimated by applying the adaptive histogram binning procedure
presented in the aforementioned reference.



Figure 3. Visualization of the considered shape distribution metrics: angle between any three random points (A3), distance of one
random point from the centroid of all points within the neighborhood (D1), distance between two random points (D2), square root of
the area spanned by a triangle between three random points (D3), and cubic root of the volume spanned by a tetrahedron between four

random points (D4).

3.3 Supervised Classification of Feature Vectors

For each considered 3D point X, all features are concatenated
to a respective feature vector and provided as input for classi-
fication. To obtain general conclusions about the suitability of
using multi-scale, multi-type neighborhoods as the basis for fea-
ture extraction, we involve several classifiers relying on different
learning principles.

3.3.1 Nearest Neighbor Classifier: This classifier relies on
the principle of instance-based learning, where each feature vec-
tor in the test set is directly compared to the feature vectors in
the training set and the class label of the most similar training
example is assigned. As similarity metric, we use the Euclidean
distance.

3.3.2 Linear Discriminant Analysis Classifier: This classi-
fier relies on the principle of probabilistic learning, where the
aim is to derive an explicit underlying probabilistic model and in-
fer the most probable class label for each observed feature vector.
For this purpose, a multivariate Gaussian distribution is fitted to
the given training data, i.e. the parameters of a Gaussian distri-
bution are estimated for each class by parameter fitting. Thereby,
the same covariance matrix is assumed for each class and only
the means may vary.

3.3.3 Quadratic Discriminant Analysis Classifier: This clas-
sifier is very similar to the Linear Discriminant Analysis classi-
fier. The difference consists in the fact that not only the means
but also the covariance matrices may vary for different classes.

3.3.4 Random Forest Classifier: This classifier relies on the
principle of ensemble learning, where the aim is to strategically
combine a set of weak learners to form a single strong learner.
More specifically, the combination of decision trees as weak learn-
ers is realized in a rather intuitive way via bagging (Breiman,
1996) which focuses on training a weak learner of the same type
for different subsets of the training data which are randomly drawn
with replacement. Accordingly, the weak learners are all ran-
domly different from each other and, hence, taking the majority
vote across the hypotheses of all weak learners results in a gener-
alized and robust hypothesis of a single strong learner (Breiman,
2001).

4. EXPERIMENTAL RESULTS

In the following, we briefly describe the involved dataset (Sec-
tion 4.1) and the conducted experiments (Section 4.2), before pre-
senting the results achieved with our framework (Section 4.3).

Class Training Set Test Set
Powerline 546 N/A
Low Vegetation 180,850 N/A
Impervious Surfaces 193,723 N/A
Car 4,614 N/A
Fence | Hedge 12,070 N/A
Roof 152,045 N/A
Fagade 27,250 N/A
Shrub 47,605 N/A
Tree 135,173 N/A
> 753,876 411,722

Table 1. Number of 3D points per class. Note that the reference
labels are only provided for the training set and not available for
the test set.

4.1 Dataset

For evaluating the performance of our framework, we use the
Vaihingen dataset (Cramer, 2010) — an airborne laser scanning
dataset acquired with a Leica ALS50 system over Vaihingen, a
small village in Germany. The acquired data corresponds to ar-
eas with small multi-story buildings and many detached buildings
surrounded by trees. The Vaihingen dataset has been presented
in the scope of the ISPRS Test Project on Urban Classification
and 3D Building Reconstruction (Rottensteiner et al., 2012), and
it meanwhile serves as benchmark dataset for the ISPRS bench-
marks on 2D and 3D semantic labeling. More details about this
dataset are provided on the ISPRS webpages', where the dataset
is also available upon request.

In the scope of the ISPRS benchmark on 3D semantic label-
ing, nine semantic classes have been defined for the Vaihingen
dataset, and these classes are given by Powerline, Low Vegetation,
Impervious Surfaces, Car, Fence | Hedge, Roof, Fagade, Shrub
and Tree. The point-wise reference labels have been determined
based on (Niemeyer et al., 2014). The Vaihingen dataset is split
into a training set and a test set (see Table 1). The training set is
visualized in Figure 1 and contains the spatial XY Z-coordinates,
reflectance information, the number of returns and the reference
labels. For the test set, only the spatial XY Z-coordinates, re-
flectance information and the number of returns are provided.

4.2 Experiments

The experiments focus on the use of the presented multi-scale,
multi-type neighborhood (Section 3.1) for extracting metrical fea-
tures given by shape measures and distribution features given by
shape distributions (Section 3.2) which, in turn, are concatenated
to a feature vector serving as input for a respective classifier (Sec-
tion 3.3).

1

see http://www2.isprs.org/commissions/comm3/wg4/3d-
semantic-labeling.html (Accessed: 11 May 2016)



Metric NN LDA QDA RF
OA 45.07 50.19 38.11  41.52
K 32.08 38.30 27.66 30.28
MCR 38.14 49.09 38.65 41.30

Table 2. Derived classification results for the NN classifier, the
LDA classifier, the QDA classifier and the RF classifier: over-
all accuracy (OA), Cohen’s kappa coefficient (x) and mean class
recall (MCR).

For the training phase, we take into account that an unbalanced
distribution of training examples per class might have a detrimen-
tal effect on the training process (Chen et al., 2004; Criminisi and
Shotton, 2013). Accordingly, we introduce a class re-balancing
by randomly sampling the same number of training examples per
class to obtain a reduced training set. For our experiments, a re-
duced training set comprising 10,000 training examples per class
has proven to yield results of reasonable quality. Note that this
results in a duplication of training examples for those classes rep-
resented by less than 10,000 training examples. Additionally, it
has to be considered that the training process might also rely on
different parameters. Whereas the Nearest Neighbor (NN) clas-
sifier, the Linear Discriminant Analysis (LDA) classifier and the
Quadratic Discriminant Analysis (QDA) classifier do not require
parameter tuning, the Random Forest (RF) classifier involves sev-
eral parameters (such as the number N7 of decision trees to be
used for classification, the minimum allowable number nyin of
training points for a tree node to be split, the number n,, of active
variables to be used for the test in each tree node, etc.) which
have to be selected by the user, e.g. by combining a grid search
on a suitable subspace with cross-validation.

For the test phase, we use the trained classifiers to assign class
labels to those 3D points of the test set. The spatial XY Z-
coordinates and the estimated labels have been provided to the
organizers of the ISPRS benchmark on 3D semantic labeling who
performed the evaluation. As evaluation metrics, we consider
the overall accuracy (OA), Cohen’s kappa coefficient (k) and the
mean class recall (MCR). Furthermore, we take into account the
class-wise evaluation metrics of recall, precision and F-score.

4.3 Results

The classification results obtained with the four considered clas-
sifiers are visualized in Figures 4 and 5, and they clearly reveal
a different behavior. This also becomes visible when looking
at the derived values for different evaluation metrics relying on
the whole dataset (see Table 2) or at the derived values for the
class-wise evaluation metrics (see Tables 3, 4 and 5). The clas-
sification metrics of overall accuracy (OA), Cohen’s kappa coef-
ficient (k) and mean class recall (MCR) indicate that the Linear
Discriminant Analysis (LDA) classifier achieves the best perfor-
mance (OA = 50.19%, x = 38.30% and MCR = 49.09%) for
our application, and a look on the respective processing times re-
quired for training and testing (see Table 6) reveals that using a
LDA classifier is also favorable in this regard. Note that the RF
classifier is the only one of these classifiers which relies on a pa-
rameter tuning, i.e. several parameters have to be determined via
a heuristic grid search (here: Nr = 2,000, nmin = 1, nqg = 3).

5. DISCUSSION

Based on the derived results, we may easily get an impression
about the pros and cons of the proposed framework for the clas-
sification of ALS point clouds (Section 5.1). To also account for
other strategies for a semantic labeling of 3D point clouds, we
subsequently provide a more general discussion on the pros and
cons of point-wise and segment-wise approaches (Section 5.2).

Class NN LDA QDA RF
Powerline 50.33 89.33 40.33 74.33
Low Vegetation 16.81 12.37 2.29 4.45
Impervious Surfaces  40.21  47.63 69.37 54.32
Car 11.43 2888 35.03 22.11
Fence | Hedge 18.43 20.44 45.45 21.75
Roof 69.88 80.70 35.82 56.06
Fagade 3490 51.26 50.94 50.53
Shrub 31.14 38.39 10.19 21.60
Tree 70.12 72,76 5841 66.59

Table 3. Class-wise recall values (in %) corresponding to the
classification results provided in Table 2.

Class NN LDA QDA RF
Powerline 7.61 3.03 1.46 0.87
Low Vegetation 40.70  53.25 44.43  50.58
Impervious Surfaces  74.25 84.98 65.51 78.18
Car 12.65 31.36 6.12 13.12
Fence | Hedge 8.26 13.18 5.35 7.75
Roof 47.88 48.63 59.92 47.94
Fagade 17.47 36.75 16.07 19.33
Shrub 23.61 28.25 2091 33.62
Tree 49.03 5746 3729 44.44

Table 4. Class-wise precision values (in %) corresponding to the
classification results provided in Table 2.

Class NN LDA QDA RF
Powerline 13.21 5.85 2.81 1.73

Low Vegetation 23.79  20.07 4.35 8.19
Impervious Surfaces  52.17  61.05 67.39 64.10
Car 12.01 30.07 10.42 16.47
Fence | Hedge 11.41  16.03 9.58 11.43
Roof 56.82 60.69 44.84 51.68
Fagade 23.29 4281 2443 27.96
Shrub 26.86 32.55 13.70  26.30
Tree 57.71 64.21 45.52 53.30

Table 5. Class-wise F-scores (in %) corresponding to the clas-
sification results provided in Table 2.

5.1 The Proposed Framework

The main goal of the proposed framework consists in the use of
geometric features extracted from multi-scale, multi-type neigh-
borhoods to allow a semantic reasoning on point-level. The use
of contextual information or additional non-geometric features is
not in the scope of this paper, since we intend to obtain insights on
the neighborhoods and the features, both representing important
prerequisites for achieving adequate classification results.

Our results with relatively low numbers for different evaluation
metrics indicate that the Vaihingen dataset with a labeling with
respect to nine semantic classes represents a rather challenging
dataset when focusing on a 3D semantic labeling. To a certain
degree, this might be due to the fact that some classes might not
be representatively covered in the training data — e.g. the class
Powerline with only 546 given training examples and the class
Car with 4,614 given training examples (see Table 1) — which, in
turn, yields poor classification results for these classes.

Furthermore, the derived results indicate that only considering
geometric features might not be sufficient for obtaining adequate
classification results for all considered classes, since some of these
classes might have a quite similar geometric behavior, e.g. the
classes Low Vegetation, Fence | Hedge and Shrub. This indeed
becomes visible in Figures 4 and 5 where particularly misclassi-
fications among these three classes may be observed for different



Figure 4. Derived classification results for the NN classifier (top left), the LDA classifier (top right), the QDA classifier (bottom left) and
the RF classifier (bottom right) when using the same color encoding as in Figure 1 (Powerline: violet; Low Vegetation: yellowish green;
Impervious Surfaces: royalblue; Car: cyan; Fence | Hedge: pink; Roof: crimson; Fagade: white; Shrub: gold; Tree: emerald-green).

Classifier ttrain Lest
NN - 3.30h
LDA 18.41s 32.62s
QDA 12.17s 97.87s
RF 27.36s 153.73s

Table 6. Required processing times tirain for the training process
and tes¢ for the classification of the test set when using the NN
classifier, the LDA classifier, the QDA classifier and the RF clas-
sifier. Note that there is no training process for the NN classifier,
since the induction is delayed to the test phase and quite time-
consuming due to the comparison of each feature vector of the
test set with each feature vector in the training set.

classifiers. Yet, also the extracted geometric features may not
be optimal as some of the neighborhoods used as the basis for
feature extraction are relatively large, e.g. the cylindrical neigh-
borhoods with radii of 3m and 5m which have also been used
in (Niemeyer et al., 2014; Schmidt et al., 2014). This, in turn,
results in misclassifications at particularly those locations where
the cylindrical neighborhood includes 3D points associated to the
classes Roof and Impervious Surfaces.

A closer look on the classification results provided in Figures 4

and 5 also reveals seam effects where borders between roofs and
facades or between facades and ground are largely categorized
into the class Fagade, particularly for the QDA classifier and the
RF classifier. Furthermore, the QDA classifier provides the best
recognition of Impervious Surfaces, while the classification re-
sults are rather poor for the classes Low Vegetation, Fence | Hedge
and Shrub. In contrast, the LDA classifier provides a good recog-
nition for the classes Roof and Tree, while problems in the sepa-
ration between Impervious Surfaces and Roof become visible.

5.2 Point-Wise vs. Segment-Wise Approaches

In the scope of this paper, we focus on a point-wise classification
of 3D point clouds, since a consideration on point-level results in
simplicity and efficiency. The same features are extracted for all
3D points based on their local neighborhood, and the classifiers
are rather intuitive and easy-to-use. Furthermore, the whole pro-
cess of feature extraction and classification can be highly paral-
lelized. As a result, we efficiently obtain a labeling of reasonable
accuracy. Due to the use of standard classifiers for classifying
each 3D point based on the respective feature vector, we may ex-
pect a slightly noisy appearance of the classified 3D point cloud
— which indeed becomes visible in Figures 4 and 5 — since these
classifiers do not account for a spatial correlation between class



Figure 5. Derived classification results for the NN classifier (top left), the LDA classifier (top right), the QDA classifier (bottom left) and
the RF classifier (bottom right) when using the same color encoding as in Figure 1 (Powerline: violet; Low Vegetation: yellowish green;
Impervious Surfaces: royalblue; Car: cyan; Fence | Hedge: pink; Roof: crimson; Fagade: white; Shrub: gold; Tree: emerald-green).

labels of neighboring 3D points. Such a spatial correlation could
for instance be considered by applying approaches for contextual
classification such as Conditional Random Fields which are e.g.
used in (Niemeyer et al., 2014; Weinmann et al., 2015b).

In contrast, a consideration of 3D point clouds on a segment-
level certainly relies on the use of an appropriate segmentation
approach in order to provide a meaningful partitioning of a 3D
point cloud into smaller, connected subsets which correspond to
objects of interest or to parts of these (Melzer, 2007; Vosselman,
2013). Due to the complexity of real-world scenes and the objects
therein, however, it often remains non-trivial to obtain a reason-
able partitioning without either (7) using the result of an initial
point-wise classification or (if) integrating prior knowledge in the
form of object models for those objects expected in the scene.
Furthermore, it has to be taken into account that a fully generic
segmentation typically results in a high computational effort.

6. CONCLUSIONS

In this paper, we have presented a framework for semantically la-
beling 3D point clouds acquired via airborne laser scanning. Our
framework relies on the use of complementary types of geometric

features extracted from multi-scale, multi-type neighborhoods as
input for a standard classifier. Involving several classifiers with
different learning principles, the results derived for a challenging
dataset with nine classes indicate that geometric features allow to
detect the classes Impervious Surfaces, Roof and Tree — which
are characteristic for an urban environment — with an acceptable
accuracy. However, there are also classes with a rather similar ge-
ometric behavior, e.g. the classes Low Vegetation, Fence | Hedge
and Shrub which are not appropriately assigned in the derived
classification results. One reason for this has been identified in
the fact that some of the neighborhoods used as the basis for fea-
ture extraction are relatively large (e.g. the cylindrical neighbor-
hoods with radii of 3m and 5m) and thus cause many misclassifi-
cations due to a “smoothing” of details.

In future work, we intend to investigate potential sources for im-
proving the classification results. This may include an exten-
sion of the presented framework by deriving further features (e.g.
from reflectance information, the number of returns, etc.) and/or
by considering contextual information inherent in the data. Fur-
thermore, we plan to investigate steps from a semantic labeling of
3D point clouds on point-level to a semantic labeling on object-
level in order to classify objects of interest and thus allow an
object-based scene analysis.
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